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! We study theories of gravitation that are based on the Einstein – Hilbert action that are
not projectively invariant and can therefore completely determine their connections. We
are thus lead to the conclusion that the geometry is necessarily Riemann – Cartan and
at least the trace part of a torsion field must be present. We examine the consequence
of including these torsion fields in cosmological models. Our results differ from those
obtained earlier in the Einstein – Cartan – Sciama – Kibble theory. We also consider a
model that includes a series of quadratic torsion terms. This series leads to a potential
function that has the effect of “turning on” the cosmological constant. This potential
function then acts like dark energy. This model also shows that the torsion field can
produce an inflationary period.
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1. INTRODUCTION

The question of the inclusion of torsion in cosmological models was consid-
ered in the early years of the development of the Einstein-Cartan-Sciama-Kibble
theory, (ECSK), of gravitation, Hehl et al. (1976). These models were based on
the Einstein-Hilbert action which included a non-symmetric connection and in
which the connection was constrained to be metric. Here and throughout this pa-
per metric means that the covariant derivative of the metric tensor with respect to
this connection vanishes. The non-symmetric part of the connection is the torsion
field. In the ECSK theory, torsion was taken to be the geometrical representation
of spin. In fact, the field equations algebraically related the spin field of the matter
to the torsion field when the connection is minimally coupled with the matter field.
With respect to cosmological models, the torsion field was associated with the spin
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of matter that filled the universe. In some models this matter took the form of a
spinning fluid and in others a fermionic matter field. There are numerous articles
on this and related topics which may be found in reference (Hehl et al., 1976) and
references cited therein, e.g. (Kerlick, 1975; Kuchowicz, 1975; Tafel, 1975).

In this paper we wish to address the question again from a new perspec-
tive. First, this perspective recognizes that a theory based on the Einstein-Hilbert
action does not completely determine the connection. And secondly, the torsion
does not have to be related to spin and could simply be a geometrical quantity
characteristic of space-time itself. For example, it has been previously suggested
that torsion might be the result of dislocations or defects in space-time that could
occur in regions of high curvature (Baker, 1990). This notion would be consistent
with the representation of torsion as the failure of the closure of parallelograms
formed by the parallel transport of vectors along alternate paths. Finally, we note
that our ideas about the universe have matured over time. For example, based
on Cosmic Background Radiation (CBR) data, today it is widely believed that
the universe is spatially flat. Also we have determined that baryonic matter com-
poses at most 5% of the matter in the universe, while the remaining mass is in
the form of dark matter (Freedman and Turner, 2003). Together visible and dark
matter compose about 30% of the mass-energy content of the universe with the
balance, 70%, beginning in the form of dark energy. Also we have a much bet-
ter idea of the age of the universe. And finally, we know that the scale factor
for the universe in a Robertson–Walker model would have a value at radiation
decoupling of one 1100th of its present value. All of this places constraints on
viable models of the universe. And in light of these new perspectives it is of some
interest to consider torsion fields as participants in the evolution of the universe
again. In particular, one might ask if torsion, a property of space-time itself, can
be related to either the dark matter or energy. In section two we consider pro-
jective invariance and propose a modified action for a gravitational theory. In
section three and four we examine the implications of the resulting field equations
and in section five we consider the possibility of torsion playing a role as dark
energy.

2. PROJECTIVE INVARIANCE

It is well known that Einstein’s theory of gravitation, which is based on
the Hilbert -Einstein action, is projectively invariant. By projectively invariant
we mean that we may add an arbitrary vector field to a connection, i.e. � →
� + B, and the Ricci scalar, constructed from the new connection, is identical
to the Ricci scalar constructed from the old connection. A general projective
change on the connection is then given by the following expression; �κ

µλ → �κ
µλ +

Bµδκ
λ .
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Parallelisms preserving transformations of this type were first considered
by Friesecke (1925), Thomas (1926) and Eisenhart (1927). This type of trans-
formation has also been considered by Einstein (1956) in an attempt to con-
struct a unified field theory. When applied to the standard Riemannian connec-
tion of Einstein’s theory we find, {κµλ} → {κµλ} + Bµδκ

λ , where {κµλ} is the usual
Christoffel connection, Schouten (1954). This has the effect of introducing a non-
symmetrical connection of the following form, �κ

µλ = {κµλ} + Bµδκ
λ . Because the

connection is now non-symmetrical we can identify the associated torsion field
as

�κ
[µλ] = Sκ

µλ = 1

2

(
Bµδκ

λ − Bλδ
κ
µ

)
.

In terms of this connection we can determine the vector field B to be
Bµ = 2

3�σ
[µσ ], where the symbol �σ

[µσ ] represents the contraction of the tor-
sion tensor over the last two indices. By including this arbitrary vector field
we have moved from a Riemannian geometry to a non-Riemannian geometry
which is not necessarily metric, i.e. the covariant derivative of the metric ten-
sor, taken with respect to the connection of the geometry, vanishes. Metric ge-
ometries that have a non-symmetric connection are Riemann-Cartan. Here the
connection then takes the general form �κ

µλ = {κµλ} + Kκ
µλ with Kκ

µλ = S..κ
µλ −

S.κ.
λ.µ + Sκ..

.µλ. In our case we have a contorsion tensor of the form Kκ
µλ = Bκgµλ −

Bλδ
κ
µ.
Since we are not necessarily relating this torsion field to the spin of matter,

and is therefore not a short range effect as in the case of spin interactions but rather
it is a property of space-time, it is important that we consider its implications for
the equivalence principle. In both the Einstein and Strong Equivalence Principles
(Ciufolini, 1995), it is assumed that we may always find a small region about a
test particle where the effects of gravitation cannot be observed. This is usually
taken to be a free falling frame, and in this case the motion of the particle would
be unaffected by a gravitational field. But particles can execute several types of
motion. They may follow geodesies, paths which are auto-parallels or paths that
are determined by their equations of motion. In general these possible paths are
not the same. First let us consider paths that are determined by the equations of
motion.

These equations may be obtained from the field equation or conservation
laws and an early example of the procedure is that of Fock (1939). By considering
the divergence of the energy momentum tensor for a point particle, or “pole”,
integrated over an appropriate volume one can find

M

(
d2xα

ds2
+

{
α

βγ

}
dxβ

ds

dxγ

ds

)
= 0,
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which also corresponds to a geodesic equation. Later Mathisson (1937) showed
that a particle with spin would sense the curvature of the space-time via a curvature
spin coupled term. Subsequently Papapetrou (1951); Papapetrou and Corinaldesi
(1951), found that, for a “pole-dipole” or spinning particle, the equations of motion
are given by:

uκ∇κ (muα) + uθ (uβ∇βSαθ ) + 1

2
Rα

ρκπuπSρκ = 0.

This is clearly not a geodesic but can be reduced to one if the spin, S, vanishes. For
Riemann-Cartan geometries the equations of motion can again be obtained from
the energy momentum tensor and following Hehl (1971) we find

uκ∇κ (P α) +
{

α

βγ

}
uγ P β + Kα

.γβP [βuγ ] = Rα
ρκλu

λSρκ .

Here P is the momentum of the test particle and u is the four velocity. The
third term on the left hand side of this expression involves the contorsion tensor
while the right hand side is of the Mathisson form. We note that this expression
is functionally similar to the Papapetrou equation. Also, for vanishing spin, the
momentum and four velocity are collinear and the equation reduces to that of a
geodesic.

In both Riemannian and Riemann-Cartan geometries, when the spin of a
test particle vanishes, the equations of motion reduce to the standard geodesic
equation. So for non-spinning test particles the EEP and SEP are valid in both
geometries.

Because of projective invariance, the vector field Bµ cannot be determined
from the Einstein-Hilbert action alone. Consequently, part of the torsion field
is also not determined by the field equations, Sandberg (1975). Our observa-
tions suggest two things. First, we are lead to Riemann-Cartan geometry. Sec-
ondly, a new action for a theory that includes this part of the connection is
needed.

There are several ways to break projective invariance (Kerlick, 1975). In
this paper we will use the means of adding a term which includes the part of the
connection which is not now determined by the standard Hilbert-Einstein action in
Riemann-Cartan geometry. The modification that we propose is to add a quadratic
term in Bφ which will break the projective invariance of the action. The action
then is of the following form

S =
∫

(R(�) + b0BφBφ)
√−g dx. (1)

Here b0 is the constant coefficient for the added non-projective invariance term. The
addition of this term breaks the overall projective invariance of the Hilbert-Einstein
action and makes the connection fully determinate. At this point we have arrived
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at an action that is equivalent to an Einstein – Cartan action but with the additional
quadratic term in Bφ . If we now constrain the geometry to be Riemann-Cartan,
we can express the Ricci scalar in terms of the purely Riemann part and the
torsion terms, i.e. R(�) = R({}) − 6BφBφ where Bφ represents the trace part of
the torsion field as noted above. Thus we can expand this action as

S =
∫

(R({}) + (b0 − 6)BφBφ)
√−g dx. (2)

The stress energy tensor that one can obtain from expression (2) by variation
with respect to gµλ is given by

Gµλ({}) + (6 − b0)

(
BµBλ − 1

2
gµλBφBφ

)
= 0. (3)

We expect that the divergence of this equation should vanish, but this is not the
case.

One needs to impose constraints on the B field, i.e. that the divergence is
constrained to vanish, and with the addition of a matter term, our total final action
is;

Stot =
∫

(−κ2[R({}) + (b0 − 6)BφBφ] + φ∇µ({})Bµ

+ � matter − κ2)
√−gdx (4)

We will now turn our attention to the investigation of the field equations that
can be obtained from the action Stot.

3. THE FIELD EQUATIONS

The field equations obtained from the variation of Stot with respect to the
metric, vector field and multiplier are respectively given by the following:

−κ2

{
Gµλ − 1

2
gµλ − �0

(
BµBλ + 1

2
gµλBσBσ

)}
+ ∇σ

(
φ

2
Bσ

)
gµλ

−1

2
φ (∇σBσ ) gµλ + T µλ = 0

(5)

(2κ2�0)Bµ = −∇µφ, (6)

∇σBσ = 0. (7)
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Here κ2 = c2/8πG and �0 = b0 − 6. We note that we may eliminate the multiplier
form the field equations by utilizing Eq. (6) in (5). We then obtain the following
expression for the stress energy tensor, Eq. (5):

−κ2

{

Gµλ − 1

2
gµλ − �0

(
BµBλ − 1

2
gµλBσBσ

) }

+ T µλ = 0

From these we will obtain the Friedman equations. We represent matter in the usual
manner as a perfect fluid and utilize a spatially flat Robertson-Walker metric, i.e.
ds2 = c2 dt2 − a2(dr2 + r2 dθ2 + r2 sin2 θ d�2), with a time dependent scale
factor a. The Friedman equations are:

(
ȧ

a

)2

=
(

c2

3κ2

)
{ρ + ρB + ρ} (8)

and

2
ä

a
=

( −1

3κ2c2

)
{ρ + ρB + ρ} −

(
1

κ2

)
{p + pB + p}. (9)

A dot over a variable represents differentiation with respect to time.
Here we have identified densities and pressures as ρB = (�0κ

2B2
4 )/(2c2),

ρ = 
2 κ2, pB = (�0κ

2B2
4 )/2 and p = −

2 κ2c2. We have also assumed that all
of the field variables are functions of time only. Consequently, as can be seen from
expression 7, Bµ has only one component, i.e. B4. The field Eq. (7), now in the
form, Ḃ4 + ( 3ȧ

a
)B4 = 0, and this determines the vector field to be B4 = C0/a

3.
This indicates that ρB is proportional to a−6 compared with matter, both visible
and dark, which scales as a−3.

In terms of the critical mass density the current Hubble parameter is defined
by H 2

c = 8πGρc

3 . We can then write Eq. (8) as

(
ȧ

a

)2

= (
H 2

c

) {
�m

a3
+ �B

a6
+ �

}
. (10)

Here the � factors are the usual ratios of densities to the critical density. We are
now in a position to examine the solution of the Friedman Eq. (10) for this model.
A convenient choice is to let w = a3. With this choice Eq. (10) can then be written
as

ẇ = 3Hc

√
�B + �mw + �w2. (11)

We will use this expression to evaluate several possible models.
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4. COSMOLOGICAL MODELS WITH TORSION

We find by direct integration that Eq. (11) leads to

w =
(

�m

�

) (
Sinh

[
3

2
Hc

√
�t

])2

+
√

�B

�

Sinh[3Hc

√
�t]. (12)

This is a general result and the scale factor goes to zero as time goes to
zero. This expression is also valid in the case of �B = 0 which would represent
the standard model, i.e. 30% matter and 70% dark energy. With �B present, and
including the requirement of �m + � + �B = 1, we find that, as �B becomes
increasingly large, the universe becomes younger. Our present perception is that
the age of the universe should be about 13.7 billion years. We conclude that to be
consistent with this age �B should have a small positive value. This means that
with respect to �0 = b0 − 6, b0 would be slightly greater than 6. This leads to the
question, what are the consequences of b0 being less than 6?

It is important to note that for b0 ≤ 6 and therefore ρB ≤ 0 we would find also
that �B ≤ 0, i.e. �B = −‖�B‖. In this case we can only speak of a minimum
value of w. A positive minimum value may be found from the roots of Eq.
(11), that is wmin = (

√
�2

m + 4� ‖�B‖ − �m)/2�. By once again integrating
Eq. (11) we obtain,

w = 1

2�

{−�m + (�m + 2�wmin)Cosh[3Hc

√
�t]

+ 2
√

�

√
−‖�B‖ + wmin(�m + �wmin)Sinh[3Hc

√
�t]}. (13)

By applying the above expression for wmin this expression reduces to

w = 1

2�

{ − �m +
√(

�2
m + 4� ‖�B‖ )

Cosh[3Hc

√
�t]

}
. (14)

In this case the universe reaches a minimum radius as time goes to zero and
does not expand from an initial singularity. We note also that this solution for w

is symmetric with respect to the time transformation t → −t . This means that we
may speak of this solution as also representing a pre-big bang model. Again for
an age of the universe of about 13.7 billion years �B needs to be very small. For
small �B , amin is to a very good approximation

amin =
[‖�B‖

�m

]1/3

. (15)
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This expression can be used to establish some limits on �B . Since we would
expect amin to be less than the scale factor at radiation decoupling, i.e. less than
1/1100, we conclude that ‖�B‖ is less than 10−9 �m. We can see from this analysis
that the torsion field determines the minimum size of a universe which has a de
Sitter character.

Would the effects of torsion be more pronounced if the cosmological constant
was not present? The solution obtained for Eq. (11), with � being set to zero
and �B being greater than zero, is given by

w = 3

4

(
3H 2

c �mt2 + 4Hc

√
�Bt

)
. (16)

This is a general result and the scale factor goes to zero as time goes to zero. If
we specify the matter to be 30% of the critical density and require spatial flatness,
then the torsion contribution would be 70% and we would obtain an age for the
universe of only about 5 billion years. If we allowed no matter at all the purely
torsion universe would be 4.5 billion years old. And finally a flat 100% matter
filled universe would have an age of 9 billion years.

For the case that �B is negative we again are faced with a minimum value
for the scale factor, wmin = ‖�B‖ /�m, and find a general solution of the form

w = 1

4

(
4wmin + 9H 2

c �mt2 + 12Hct
√

�mwmin − ‖�B‖).
By applying this minimum value we obtain

w = 1

4

(
4 ‖�B‖

�m

+ 9H 2
c �mt2

)
. (17)

As before, the universe has a minimum radius as time goes to zero and does
not expand from an initial singularity. We note also that this is another solution
for w which is symmetric with respect to the time transformation t → −t , and so
this solution also represents a pre-big bang model. This model is very sensitive to
the amount of matter present in the universe. For 100% matter, the minimum scale
factor value is zero and the age is 9 billion years. As the mass content decreases the
universe gets younger, but the minimum radius, again given by amin = [ ‖�B‖

�m
]1/3,

increases. For example at 60% matter the scale factor is 0.87, with an age of
6.7 billion years. However, the matter content can not decrease below 50% since
a non-real age results. At 50% matter the age of the universe is zero and the
minimum scale value is one. This is a completely unrealistic result.

For amin to be less than the scale factor at radiation decoupling, i.e. less than
1/1100, we conclude that ‖�B‖ is less than 10−9 �m. But this is essentially the
case of 100% matter, as noted above, which results in a universe that is much too
young.
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We began this section with an action that included only quadratic terms in the
torsion field Bλ, that is BφBφ . This term broke projective invariance, but higher
order terms would also accomplish the same goal. In fact a power series in BφBφ

would be the most generally allowed combination. We have also seen that our
models indicate torsion is significant only for very small scale factors. But, even
though it is a small effect, could it contribute to a global factor such as dark energy?

5. TORSION AND DARK ENERGY

Since we are fee to consider a power series in BφBφ we have designed a
potential that “turns on” the cosmological constant as the torsion field decreases.
Consider a variational principle of the following form:

Stot =
∫

(−κ2[R({}) + �BφBφ] + φ∇µ({})Bµ + � matter + e[−αBφBφ ])
√−gdx

This action is the same as that of Eq. (4) but differs by the inclusion of a
potential function, the exponential factor, which contains BφBφ , along with what
would otherwise be the cosmological constant. For high values of BφBφ this
term is essentially zero but as time progresses it would become larger and the
cosmological constant is “turned on”.

The resulting field equations following from variation with respect to the
metric, the multiplier and the torsion field are respectively:

−κ2Gµλ + �κ2

(
BµBλ + 1

2
gµλBσBσ

)
+ 1

2
∇νφ · Bνgµλ + T µλ

+ αBµBλe[−αBσ Bσ ] − 1

2
gµλe[−αBσ Bσ ] = 0 (18)

−2κ2�Bµ − ∇µφ − 2αBµe[−αBσ Bσ ] = 0 (19)

∇σBσ = 0 (20)

Where κ2 = c2/8πG.
We may eliminate the multiplier from the stress energy tensor (18), by using

Eq. (19) and then it may be rewritten as:

−κ2Gµλ + �κ2

(
BµBλ − 1

2
gµλBσBσ

)
+ T µλ + αBµBλe[−αBσ Bσ ]

−gµλαBσBσ e[−αBσ Bσ ] − 1

2
gµλe[−αBσ Bσ ] = 0 (21)
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Also, by forming the curl of the gradient of the multiplier we can eliminate
it from Eq. (19) leaving this expression in the following form:

(∇λBµ − ∇µBλ)F + Bµ∇λF − Bλ∇µF = 0,

where F = −2(κ2� + αe[−αBσ Bσ ]).
Finally, we will note that the torsion vector field has spin. This can be seen

by considering a Minkowski space-time version of our action, that is;

Stot =
∫

(L)dx =
∫

(−κ2[�BφBφ] + φ∂µBµ + e[−αBφBφ ])dx.

The canonical energy-momentum tensor is given by

tωτ = ∂L

∂Bσ,ω

Bσ,τ − δω
τ L = φnσωBσ,τ − δω

τ L.

The anti-symmetric portion of this energy-momentum tensor is non-zero,
i.e. t[ωτ ] = φ∂[τBω], and so we can identify the spin from the relationship;
t[ωτ ] = ∂λS

λ
ωτ . Therefore, for the torsion vector field we have a spin tensor

given by Sλ
ωτ = φδλ

[ωBτ ]. Having made these observations about the structure
of the field equations we will now turn our attention to their cosmological
consequences.

Equation (20) for our Robertson-Walker geometry has the solution B0/a
3.

To be consistent with our units we choose the constant B0 to be c/
√

α .
The associated Friedman equation is given by

(
ȧ

a

)2

=
(

c2

3κ2

)
{ρ + ρB}. (22)

In this expression the densities are identified as follows: ρ → The usual
matter density which is inversely proportional to the scale factor cubed. We will
assume a matter dominated universe so the associated pressure is zero. ρB → The
density associated with the torsion field, and is given by

ρB = �κ2

2αa6
− 

2
e[−1/a6]. (23)

The corresponding pressure is

pB = �c2κ2

2αa6
+

{
1

a6
+ 1

2

}
c2e[−1/a6]. (24)
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Fig. 1. Scale factor evolution for the model with the torsion potential.

For a model consistent with our present observations  will be cho-
sen to be − 2

3�ρce. With this choice the Friedman equation is given
by

(
ȧ

a

)2

= H 2
c

{
�m

a3
+ �κ2

2ρcαa6
+ e(a6−1)/a6

(�/3)

}
. (25)

For this model we assume that �m is 0.3 and the value of �, initially unspec-
ified will be found to be about 0.7. Having made the identifications for the various
terms, we find by conducting simulations with this model that the best combination
which produces a universe with an age of 13.7 billion years is for an � of 0.695,
α = 1054 m2 and � = 50. Figure 1 shows the evolution of the scale factor for this
model.

Figure 2, below, compares this model with the scale factor evolu-
tion of the standard model, i.e. Eq. (12) with �B = 0. The agreement be-
tween the predictions of the two models is reasonably good. The torsion
field model expands at a greater rate earlier in its evolution, reaching the
value associated with decoupling, 1/1100, at about 30 years after the Big
Bang versus the 454,000 years for the 30% matter and 70% dark energy
model.
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Fig. 2. A comparison of the scale factor evolution for the standard model and the torsion
potential model.

The behavior of this model can be understood by realizing that for small scale
factor values Eq. (25) basically reduces to

(
ȧ

a

)2

= H 2
c

�κ2

2ρcαa6
. (26)

This has as its solution a = [3Hcκt(
√

�/2αρc)]1/3.
Compared with the standard model at early times, i.e. a =

[( �m

�
)(Sinh[ 3

2Hc

√
�t])2]1/3, we see that the standard model expands at a much

slower rate, which is on the order of 10−17 times less than that of the torsion model
at 10−32 s. So we see that the model with torsion has an inflationary aspect. At
about 8 billion years the last term in Eq. (25) suddenly increases from a near zero
value as the torsion potential becomes significant.

The effect of this term can be seen in the pressure versus density and the
deceleration evolution, Figs. 3 and 4. If we examine the pressure versus density
evolution for the Bλ field, i.e. pB/(ρBc2), we find that it becomes increasingly
negative with time, Fig. 3.

In this particular model there is a rapid transition from 1 to −3.3 that occurs
between 8 and 11 billion years, afterwards it gradually returns to a value of −1. For
the deceleration parameter there is a transition form a positive value to a negative
value as well.
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Fig. 3. The ratio or pressure to density as a function of time in billions of years.

When this transition occurs is determined by the “turning” on of the torsion
potential which is controlled by the e(a6−1)/a6

factor, see Eq. (25). Figure 4 shows
the change of the deceleration parameter q and the pressure to density ratio of the
Bλ field along with the e(a6−1)/a6

factor.

Fig. 4. Plot of the deceleration parameter, q, pressure to density ratio and e(a6−1)/a6
.
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It should be noted for this model that, with respect to the deceleration param-
eter q, the universe undergoes a period of deceleration for about 8 billion years
followed by acceleration which then settles down to a q value of −1. The change
of these parameters is due to the specific form of the potential that we are using.
The details could possibly be altered by refinements of the functional form of
the potential. The important feature is that, as in the case of the standard model,
the deceleration goes from a positive to a negative value as the universe evolves.
When this transition of q and the pressure to density ratio to more negative values
occur can be adjusted by varying the α parameter. Smaller values than the nominal
value result in transitions at a much earlier time in the evolution of the universe,
and a much younger universe. So the nominal value that we have found here is
the smallest reasonable value. It is worth noting that for α = 1054m2 the current
magnitude of the torsion field (

√
BφBφ) is 1/

√
α which is very small. This value

is consistent with the belief that any torsion field present would have a small
value.

6. TORSION AS DARK ENERGY VERSUS K-ESSENCE

Because the torsion field that we are considering has only one component,
it might be treated as being determined by the gradient of a scalar field. In that
case, the model presented here could be viewed as a sub case of a quintessence
(Caldwell et al., 1998; Ferreira and Joyce, 1997; Frieman et al., 1995; Ratra
and Peebles, 1988) or k-essence (Armendariz-Picon et al., 1999; Chiba, 2002;
Armendariz-Picon et al., 2000; Chiba et al., 2000; Chimento and Feinstein,
2004; Malquarti et al., 2003; Scherrer, 2004) theory. Because of this, it is worth
considering a scalar field version, similar to those considered in k-essence models,
based on the same general action as we chose for the torsion field. Therefore,
consider a model with the following action:

Stot =
∫

(−κ2R({}) + � matter + Af �,µ�,µ + De[−βf �,µ�,µ])
√−gdx (27)

Here we have included a function, f , that is dependent on the quantity �,µ�,µ

which we shall designate as X for brevity, i.e. f (X). This function is in general a
polynomial in X and we shall assume that is of the form,

∑
n CnX

n. The following
field equations that result from variation with respect to the metric and scalar field
are respectively:

−κ2Gµλ + T µλ − Af
gµλ

2
�,ρ�

,ρ − gµλ

2
De[−βf �,ρ�,ρ ]

+ gµτgλκ�,τ�,κ

(
A − βDe[−βf �,ρ�,ρ ])

(
f + ∂f

∂X
X

)
= 0 (28)
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and

∂λ

[√−g(gµλ�,µ

{ − A + βDe[−βf �,ρ�,ρ ]
} {

f + ∂f

∂X
X

} ]
= 0. (29)

We can identify the corresponding density and pressure associated with the
scalar field as

ρ� = A

2
f

�̇2

c2
−

[
βf �̇2

c2
+ 1

2

]
De[−β�̇2/c2] + (A − βDe−βf �̇2/c2

)
∂f

∂X

�̇4

c4
(30)

and,

p�

c2
= A

2
f

�̇2

c2
+ D

2
e[−βf �̇2/c2]. (31)

Making the usual assumption that the fields are time dependent only we can
show that expression (29) can be simplified as

�̇
( − A + βDe[−β�̇2/c2]

) (
f + ∂f

∂X

�̇2

c2

)
= w0

a3
(32)

Here w0 represents the current values for the scalar field derivatives, i.e.

�̇0(−A + βDe[−β�̇2
0/c

2])(f + ∂f

∂X

�̇2
0

c2 ). Equation (32) is in general a transcendental
equation and does not have a simple closed from solution. Further the details of
f (X) need to be specified.

As a starting point let us assume that f (X) is a constant. Since we expect
that early in the evolution of the universe �̇ should have a large magnitude the
expression (32) tells us that the following relationship should be approximately
true �̇ = w0

(−A)a3 . Formally, this is in agreement with the vector torsion field case.

However, late in the evolution, as a becomes larger, we expect �̇ to approach a
zero value. To a very good approximation the field equation is then given by

�̇(−A + βD(1 − β�̇2/c2)) = w0

a3
. (33)

This can be solved for �̇, which gives us an expression that assumes a
limiting value of zero as a becomes infinitely large only if A = βD. Imposing this
requirement leads to a rather simple solution of the form

�̇ = n0

(−A)a
, (34)
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where we have chosen A such that βw2
0 = A2c2 and n2

o = c2

β
.

This differs from the torsion field case which is always inversely proportional
to a3.

Now let us assume that f (X) is no longer a constant but takes the form
of a polynomial. In this case the quantity (f + ∂f

∂X
�̇2

c2 ) can be expressed as
∑N

j=0 (j + 1)CjX
j .

Again, if we assume that �̇ should have a large magnitude early in the
evolution of the universe this series will be dominated by its highest order term, N ,
of the polynomial. In this case Eq. (32) can be expressed as �̇A(CN (N + 1) �̇2N

c2N ) =
w0
a3 which leads to �̇ = w′

0
a3/(2N+1) . We note that as the polynomial order increases �̇

approaches a constant value. Again, this differs from the torsion field case which
is always inversely proportional to a3.

Finally for small values �̇ only the lowest order terms of a polynomial for
f (X) would apply and we would find that (32) can be approximated as �̇{−A +
βD − β2Df �̇2}{C0 + C1�̇

2} = w0
a3 , so that to third order in �̇ we find �̇ = w′′

0
a

.
Consequently the torsion vector field model does not, in general, yield the

same behavior as the scalar field cases posed either by k-essence or in a simplified
scalar model, and so our model is distinct from those models that employ scalar
fields. We further note that none of these scalar fields have spin, which again
distinguishes them from the torsion field case.

7. CONCLUSIONS

Our work has shown that by breaking the projective invariance of the action
for Einstein’s theory of gravitation we are able to introduce torsion, specifically the
trace part of the more general torsion tensor, in a natural way which is unrelated
to the spin of a matter field. In this regard torsion is distinct from that found in
the ECSK. We began with a simple quadratic combination of the torsion vector
field which was added to the Hilbert-Einstein action. Cosmological models based
on this now non-projectively invariant action were then considered. These models
showed that torsion would be significant in the early universe, but the ages of the
universe predicted by these models would not in general be consistent with our
current understanding. Also, by choosing an appropriate value for the coupling
constant of the quadratic torsion term, the initial singularity could be avoided.
Although this effect is similar to that found in the ECSK theory, the causes are not
the same.

Finally, we considered a model that includes a series of quadratic torsion terms
that break projective invariance. This series, which is an exponential function, leads
to a potential function that has the effect of “turning on” the cosmological constant.
This potential function then acts like dark energy as the torsion field diminishes
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with the expansion of the universe. This model also shows that although the
magnitude of the torsion field in the early universe is small it can produce an
inflationary period. The evolution of the scale factor and age of the universe as
predicted by this new model are consistent with our current understanding of the
universe. It also predicts radiation decoupling earlier than that by the standard
model, i.e. 30 years versus 450,000 years. By adding the torsion field in concert
with dark energy, this model has given a geometrical origin to this enigmatic
phenomenon.
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